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Spin glass behavior upon diluting frustrated magnets and spin
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Abstract. A Bethe-Peierls treatment to dilution in frustrated magnets and spin liquids is given. A spin
glass phase is present at low temperatures and close to the percolation point as soon as frustration takes
a finite value in the dilute magnet model; the spin glass phase is reentrant inside the ferromagnetic phase.
An extension of the model is given, in which the spin glass/ferromagnet phase boundary is shown not to
reenter inside the ferromagnetic phase asymptotically close to the tricritical point whereas it has a turning
point at lower temperatures. We conjecture similar phase diagrams to exist in finite dimensional models
not constraint by a Nishimori’s line. We increase frustration to study the effect of dilution in a spin liquid
state. This provides a “minimal” ordering by disorder from an Ising paramagnet to an Ising spin glass.

PACS. 61.43.-j Disordered solids – 64.60.Ak Renormalization-group, fractal, and percolation studies of
phase transitions – 64.60.Kw Multicritical points

1 Introduction

When non magnetic sites are diluted in an unfrustrated
ferromagnet with a probability µ, the transition tempera-
ture is reduced and vanishes at the percolation threshold
1− µP,0. In such non frustrated systems, two phases only
exist: a low temperature ferromagnetic phase above the
percolation threshold, and a paramagnetic phase. If the
temperature is decreased at the percolation threshold, the
dynamics becomes slower because large-scale droplet-like
objects of size ξT form, with ln ξT ∼ J/T [1]. These objects
have energy barriers scaling like the logarithm of their vol-
ume [2,3]. This results in a slow dynamics and interrupted
aging [4] (i.e. with a finite relaxation time [5]). This shows
that despite the absence of frustration, the simplest mod-
els of dilute magnets already have a phenomenology close
to the one of spin glasses, even though freezing in these
systems is a cross-over due to an increasing correlation
length becoming of order of the system size. This indi-
cates that some perturbations of these unfrustrated sys-
tems may drive them to a true spin glass phase, which we
show in the present article by studying the thermodynam-
ics of a particular model.
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In dilute magnet compounds, such as EuxSr1−xS [6–8],
a low temperature spin glass phase appears close to the
percolation threshold. The main features of the phase di-
agram are:

(i) As the dilution µ is increased from the pure system
with µ = 0, the ordering temperature decreases.

(ii) A tricritical point exists at a dilution µt and tempera-
ture Tt, with 1−µt of order of the percolation threshold
1−µP,0 in the absence of frustration. At this tricritical
point, the ferromagnetic, paramagnetic and spin glass
phases meet.

(iii) As dilution is increased from µt, the spin glass tran-
sition temperature decreases from Tt at the tricriti-
cal point to zero at the percolation threshold 1− µP,
with 1 − µP the percolation threshold of the system
with frustration, smaller than the percolation thresh-
old 1− µP,0 in the absence of frustration.

(iv) The spin glass phase is reentrant inside the ferromag-
netic phase.

One purpose of the present article is to show that these
qualitative features of the phase diagram can be repro-
duced in a model that combines dilution and short range
frustration. This model does not consist in a detailed mi-
croscopic modeling of EuxSr1−xS, but rather contains the
generic ingredients entering the physics of these systems
(dilution and short range frustration) [9]. Even though
this treatment relies on a specific lattice topology (a tree
structure), Bethe-Peierls phase diagrams are equivalent to
mean field phase diagrams while the Bethe-Peierls method
is powerful enough to give an exact answer to the issue of
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reentrance. The resulting phase diagrams are therefore not
expected to be specific to our treatment but are generic
features of the coupling Hamiltonian.

The article is organized as follows. The model is
given in Section 2. The paramagnetic phase boundary
is solved in Section 3. We study in Section 4 the spin
glass/ferromagnet phase boundary and show that it is
reentrant. The issue of reentrance is non trivial because
Nishimori’s argument [10–14] does not hold in our model,
part of the exchanges being frozen. An extension of the
model is given in which the spin glass/ferromagnet phase
boundary is shown not to reenter in the ferromagnetic
phase asymptotically close to the tricritical point, whereas
it has a turning point at a lower temperature. We expect
this unusual type of phase diagram to be a generic feature
of models combining disordered and frozen exchanges, and
may be obtained in finite dimensional models also. Fi-
nally, we study in Section 5 the effect of diluting a spin
liquid state, in which case ordering by disorder generates
a transition from an Ising paramagnet to an Ising spin
glass. This ordering by disorder mechanism is “minimal”
because spins have an Ising symmetry only.

2 The model

2.1 The dilute magnet model and its generalization

In a Bethe-Peierls calculation, only the properties of the
“top” spin (the highest one in the hierarchy; see Fig. 1) are
considered, and the thermodynamic limit is obtained by
growing the number of generations to infinity [15–17]. The
top spin fixed point magnetization distributions P ∗(m)
are of three types: (i) paramagnetic phase: P ∗(m) = δ(m);
(ii) spin glass phase: P ∗(m) is even; (iii) ferromagnetic
phase: P ∗(m) has a finite first moment. The transitions
between the phases are of a mean field type [15–17].
The phase diagram of the ±J model on the Bethe lat-
tice [18–24] is very similar to the one of the Sherrington-
Kirkpatrick model, and the Bethe-Peierls treatment al-
lows a correct description [24] of the Almeida-Thouless
line [25]. This shows that a Bethe-Peierls treatment suc-
ceeds in reproducing the mean field phase diagram of spin
glass models.

We consider a model in which the ferromagnetic bonds
J of the Cayley tree are canceled with a probability µ.
Frustration is added by completing the triangles, with
frozen antiferromagnetic bonds τ forming a Husimi cactus-
like structure [26] (see Fig. 1). We use the binary variables
θi = 0, 1, with Ji = θiJ . The temperature is expressed in
units of J . The Hamiltonian is

H = −
∑
〈i,j〉

θi,jσiσj + τ
∑
〈i,j〉′

σiσj , (1)

where 〈i, j〉 denotes the bonds of the tree structure and
〈i, j〉′ the next nearest neighbor pairs of sites in the same
generation. The distribution of the θ-variable is

p(θ) = (1− µ)δ(θ − 1) + µδ(θ). (2)

x

y
z

ferromagnetic coupling ( θ = 1 )

cancelled ferromagnetic coupling ( θ = 0 )

antiferromagnetic coupling ( τ )

Fig. 1. The Husimi cactus-like structure model of dilute mag-
net with frustration. The structure with a top spin x is ob-
tained by gluing the two structures with top spins y and z.
The top spin is the highest one in the hierarchy (at site x in
this figure). The ferromagnetic bonds of the tree are canceled
with a probability µ and a fixed antiferromagnetic coupling τ
is added.

The specificity that some bonds are frozen in this model
has drastic consequences on the shape of the phase dia-
gram, as we will show.

The Husimi cactus structure allows the introduction
of a local frustration resulting from next-nearest-neighbor
interactions, and can be used to mimic the effects of lo-
cal antiferromagnetic interactions in dilute compounds.
Chandra and Douçot [27] considered a frustrated spin
model on a regular Husimi cactus structure, and stud-
ied ordering by disorder in the spin liquid state in the
Bethe-Peierls limit (see also [28] for a study of the effect
of quantum fluctuations). These authors considered a non
disordered model in which a spin glass phase cannot ex-
ist [27]. In our model with randomness, we show the sta-
bility of a spin glass solution in some regions of the phase
diagram.

We consider bond instead of site percolation because
the site percolation threshold of the Husimi cactus struc-
ture would be equal to the one of the tree structure, in-
dependent of the additional bonds τ . The bond perco-
lation model is therefore better suited for modeling di-
lute compounds [6], since the bond percolation threshold
of the structure without frustration (a tree structure) is
1−µP,0 = 1/2, larger than the bond percolation threshold
1− µP = 1− 1/

√
2 of the structure with frustration (the

Husimi cactus structure shown in Fig. 1).
For the sake of generality, we not only consider a di-

lute magnet model with θ = 0, 1, but extend the bond
distribution (2) to incorporate possible antiferromagnetic
bonds on the tree structure. The distribution of the bond
variables θ is

p(θ)=(1−λ)(1−µ)δ(θ−1)+µδ(θ)+λ(1−µ)δ(θ+1), (3)

while the additional antiferromagnetic bonds τ are frozen.
This model interpolates between the dilute model with
a short-range frustration τ (λ = 0), and the ±J model
(µ = 0 and τ = 0).
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2.2 Absence of a Nishimori line argument

Our Hamiltonian is formally invariant under local gauge
transformations σi → εiσi, Ji,j → εiεjσiσj , with
εi = ±1 [29]. In some spin glass models (such as the ±J
model), gauge invariance provides strong constraints on
the phase diagram. The internal energy can be calculated
exactly on Nishimori’s line by expanding the average en-
ergy over the gauge group [10]. This line crosses the phase
boundary at the tricritical point [10–13]. Moreover, spin
correlations can be related to gauge variable correlations,
with the consequence that the frontier between the ferro-
magnetic and spin glass phases is either vertical or reen-
trant [10]. In our model, gauge invariance is useless for
the following reason. One can define a local distribution
of bond variables Pi,j(J), being (3) on the tree bonds, and
δ(J + τ) on the antiferromagnetic bonds τ . Nishimori’s
line is defined by βN = 1

2 ln
(

1−λ
λ

)
[14], and βN = +∞.

The first equality originates from the tree bond variables
and the second from the frozen antiferromagnetic bonds τ .
The two equalities can be formally met if λ = 0, in which
case Nishimori line is βN = +∞. However, this does not
make predictions on the phase diagram possible even in
the case λ = 0 [30] because one does not expect to be
able to describe finite temperature spin glass properties
in terms of the ground state only (the only state selected
if βN = +∞). Nishimori’s argument can therefore not be
made in this model, and the question of reentrance (item
(iv) in the introductory section) cannot be answered on
the basis of Nishimori’s line while Bethe-Peierls calcula-
tions are powerful enough to allow the derivation of exact
results. We show that the spin glass/paramagnet bound-
ary is reentrant in the dilution model (λ = 0) in the
(µ, T ) plane. In the ±J model with the additional cou-
pling τ (µ = 0), and in the (λ, T ) plane, we show that
the spin glass/ferromagnet phase boundary is not reen-
trant asymptotically close to the tricritical point, whereas
it has a turning point at lower temperatures. This behav-
ior, richer than in usual spin glass models, is to our opinion
a generic feature of Hamiltonians combining disorder and
frozen bonds. We conjecture the existence of finite dimen-
sional models with a similar phase diagram.

3 Recursion relations

We now derive the recursion of the top-site magnetization
when cacti are glued as shown in Figure 1. We denote by
mx the magnetization at site x, and my and mz the mag-
netizations at the descendant sites y and z. The derivation
of the recursion relations in our dilute magnet model is
similar to the case of the ±J model (see Ref. [23]).

3.1 Recursions and the paramagnet phase boundary

Following reference [23], we denote by Z(±)
x the condi-

tional partition function with the spin at site x frozen
in the direction ±. The magnetization at site x is mx =

(Z(+)
x −Z(−)

x )/(Z(+)
x +Z(−)

x ). The partition functions Z(±)
x

are related to the partition functions Z(±)
y,z of the descen-

dant sites according to

Z(σx)
x =

∑
σy,σz

WB
θy,θz(σx|σy, σz)Z

(σy)
y Z(σz)

z , (4)

with the Boltzmann weight factor

WB
θy,θz(σx|σy , σz) = exp (β(θyσxσy + θzσxσz))

× exp (−βτσyσz), (5)

and θ = 0,±1. We next trace over the spins at sites y and
z in equation (4) to obtain

mx = f(my,mz|θy, θz)

= p
my(θy − uθz) +mz(θz − uθy)

1− up2θyθz +mymz(p2θyθz − u)
, (6)

with p = tanh (βJ) and u = tanh (βτ). The recursion of
the magnetization distribution is

Pn+1(mx) =
∫

dmxdmy

∑
θy,θz

p(θy)p(θz)Pn(my)

× Pn(mz)δ (mx − f(my,mz|θy, θz)) , (7)

with p(θ) the distribution of bond variables (3), and Pn
the magnetization distribution of the top spin with n levels
of hierarchy. We denote by 〈〈mk〉〉n the moment of order
k of Pn(m).

We now parametrize the tricritical line, where the
three phases (paramagnetic, ferromagnetic and spin glass)
meet. The meeting point of these phases is a line in the
parameter space (λ, µ, T ). If λ [µ] is fixed and the phase
diagram is considered in the (µ, T ) [(λ, T )] plane, the three
phases meet in a tricritical point. Let us first consider the
stability of the paramagnetic solution with respect to per-
turbations in the first moment. To lowest order the recur-
sion of the first moment is 〈〈m〉〉n+1 = 2p〈〈Gy,z〉〉〈〈m〉〉n,
with Gy,z = (θy−uθz)/(1−up2θyθz). The disorder average
of G is understood as 〈〈Gy,z〉〉 =

∑
θy,θz

p(θy)p(θz)Gy,z .
The paramagnetic solution is stable with respect to per-
turbations in the first moment if 2p〈〈Gy,z〉〉 < 1. A similar
reasoning shows that the paramagnetic solution is stable
with respect to perturbations in the second moment if
2p2〈〈G2

y,z〉〉 < 1. To summarize, the tricritical line is de-
fined by

2p〈〈Gy,z〉〉 = 1 , and 2p2〈〈G2
y,z〉〉 = 1. (8)

3.2 Limiting cases

3.2.1 The pure system

Let us consider the recursion (6) in the pure system
limit in which the variables θ are all equal to unity.
This amounts to specializing the distribution (3) to the
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Fig. 2. Phase diagram of the pure Husimi cactus system (all
the coupling θ being unity) as a function of the frustration τ .
A low-temperature ferromagnetic phase is present if τ < 1. If
τ > 1, the system is a spin liquid (it does not order even at
zero temperature).

case λ = µ = 1 while keeping finite the local frus-
tration τ . The only possible phases are ferromagnetic
and paramagnetic. The recursion of the magnetization is
mn+1 = 2p(1−u)mn/(1−pu2 + (p2−u)m2

n). The param-
agnetic phase is stable against ferromagnetic fluctuations
if 2p(1−u)/(1− pu2) < 1. The phase diagram is shown in
Figure 2 as a function of the frustration τ with a spin liq-
uid phase if τ > 1. When considering in the following the
frustrated magnet model, we assume τ < 1, in which case
the pure system has an ordered phase at low temperature.
Diluting the spin liquid state with τ > 1 is examined in
Section 5.

3.2.2 ±J model

The ±J model is recovered if µ = τ = 0, with a tricritical
point at coordinates pt = 1/2, λt = 1

2

(
1− 1√

2

)
[23].

3.2.3 Dilute magnet with frustration

If λ = 0 and τ 6= 0 the relations (8) become

2p(1− µ)(1− u)(1− µup2)
1− up2

= 1 (9)

2(1−µ)p2

(1−up2)2

(
(1−µ)(1−u)2+µ(1+u2)(1−up2)2

)
=1, (10)

determining the paramagnetic phase boundary shown in
Figure 3. The frontier between the spin glass and ferro-
magnetic phases will be examined in Section 4 by looking
for an instability in the first moment of the spin glass
solution.

The zero temperature limit of the paramagnetic/spin
glass phase boundary can be obtained by considering first

0.1 0.2 0.3 0.4 0.5 0.6
µ

 Para 

 Ferro 

 Spin 
 Glass 

 = 0.1 τ 

para / ferro
para / spin-glass

Fig. 3. Phase diagram of the dilute magnet model with frus-
tration (λ = 0, τ = 0.1). The spin glass phase exists below
the percolating dilution µP = 1/

√
2 ' 0.707. The paramag-

netic/spin glass phase boundary inside the ferromagnetic phase
is unphysical, as well as the paramagnetic/spin glass boundary
inside the spin glass phase. The solid line is obtained from the
calculation in Section 4.3 of the frontier between the spin glass
and ferromagnetic phases. This solution is exact close to the
critical point and we have continued it to lower temperatures
by an arbitrary linear behavior. The exact zero temperature
spin glass/ferromagnet phase boundary is µ0 ' 0.24191.

the limit p = 1 in equation (10), and second the limit
u = 1. The order in which the two limits are taken is
imposed by the fact that 1 − p � 1 − u � 1 at low
temperatures because τ < 1. One finds the limit to be
1−µ = 1−1/

√
2. As it is expected, this dilution is equal to

the percolation threshold of the Husimi cactus structure.

4 Frontier between the spin glass
and ferromagnetic phases

4.1 Method

In order to determine the frontier between the spin glass
and ferromagnetic phases, we study the instability of the
spin glass solution with respect to perturbations in the
first moment. This involves first calculating the spin glass
solution close to the tricritical line and next determining
whether this solution is stable with respect to ferromag-
netic fluctuations. Carlson et al. [23] performed this cal-
culation for the ±J model close to the tricritical point,
and shown the spin glass phase to be marginally reen-
trant inside the ferromagnetic phase. By marginal, we
mean that the spin glass/ferromagnet phase boundary has
a quadratic behavior λt − λ ∼ (Tt − T )2, which is specific
to this model. Other models (as the one we presently ana-
lyze) have a linear behavior λt−λ ∼ Tt−T , with a positive
(reentrant behavior) or negative prefactor (non reentrant
behavior). The calculation follows reference [23] where the
±J model was solved, and is asymptotically exact close
to the tricritical point. This is complemented by an exact
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determination of the zero temperature phase boundaries
which, to our knowledge, has not appeared previously in
the literature even for the ±J model.

We first determine the asymptotic spin glass solution
close to the tricritical line. The second moment to lowest
order is

〈〈m2〉〉 =
2p2〈〈G2

y,z〉〉 − 1
4p2

t 〈〈Gy,zGz,yH〉〉t
, (11)

with H = (p2θyθz − u)/(1 − up2θyθz), and the subscript
“t” denoting a quantity evaluated on the tricritical line.
We next consider a perturbation in the first moment of
the spin glass solution. The recursion of the first mo-
ment is 〈〈m〉〉n+1 = κ〈〈m〉〉n , with κ = 2p〈〈Gy,z〉〉 −
2pt〈〈m2〉〉〈〈Gy,zH〉〉t to order (Tt − T ). If κ < 1 the
spin glass phase is stable and otherwise the ferromagnetic
phase is stable.

4.2 ±J model with an additional short-range coupling
τ ; Fixed µ; (λ, T) phase diagram

In the small-τ limit, it is straightforward to show that

1. The tricritical point can be determined in an expansion
in ut: pt = 1− 2λt = 1√

2
(1 + ut

4 ).
2. The slope of the spin glass/ferromagnet phase bound-

ary at the tricritical point is

dκ
dT

∣∣∣∣
t

=
ut

4T 0
t

(
1− 5

√
2

2T 0
t

)
' −0.467 ut < 0, (12)

with T 0
t = 1/ tanh−1 (1/

√
2) ' 1.135 the tricritical point

temperature with τ = 0.
From what we deduce that the spin glass phase does

not reenter inside the ferromagnetic phase close to the
tricritical point.

Notice that dκ/dT |t in equation (12) vanishes if τ = 0.
This is because reentrance is marginal in the ±J Bethe lat-
tice spin glass [23] and can therefore not be obtained from
an expansion to first order in Tt − T . We have evaluated
numerically the coefficient κ with a finite τ and a finite
µ. As µ is increased above a critical value, the transition
changes from reentrant to non reentrant.

We now derive the exact spin glass solution in the zero
temperature limit, which allows to discriminate rigorously
between the two behaviors in Figure 4a and 4b. We look
for the zero temperature fixed point spin glass and ferro-
magnetic solutions P ∗(m) under the form

P ∗(m) =
x+ y

2
δ(m− 1) + (1− x)δ(m) +

x− y
2

δ(m+ 1),

(13)

with x and y the spin glass and ferromagnet order param-
eters. It turns out that the functional form of the magne-
tization distribution (13) is stable when it is iterated in
the zero temperature limit of (6) and (7). To determine x
and y, we impose (13) to be the fixed point magnetization

T
em

pe
ra

tu
re

T
em

pe
ra

tu
re

Ferro Ferro

ParaPara

Spin
glass

Spin
glass

λ λ

(a) (b)

Fig. 4. Possible shapes of the spin glass/ferromagnet phase
boundary in the ±J model with a small antiferromagnetic cou-
pling τ corresponding to a spin glass phase not reentrant inside
the ferromagnetic phase asymptotically close to the tricritical
point. This implies two possible behaviors: (a): no reentrance
at any temperature (b): no reentrance close to the tricritical
point but reentrance at lower temperatures. We prove that (b)
is the correct behavior in a zero temperature exact solution.

distribution. The solution with a finite magnetization is
x = (1−4λ)(1−2λ), and y2 = (1−4λ)(1−8λ)/(1−2λ)2.
Imposing y2 > 0 leads to the intersection λ0 = 1/8 =
0.125 of the spin glass/ferromagnet phase boundary and
the zero temperature axis in the (λ, T ) plane. λ0 is in-
dependent of the strength of the additional coupling τ .
If τ = 0, the value λt of λ at the tricritical point is
λt = 1

2 (1− 1√
2
) ' 0.146 [23], larger than λ0. The zero tem-

perature solution is therefore consistent with the reentrant
behavior of the spin glass/ferromagnet phase boundary of
the ±J Bethe lattice spin glass [23]. As τ is increased, the
tricritical point (λt(τ), Tt(τ)) evolves with τ whereas the
intersection of the spin glass/ferromagnet phase boundary
and the zero temperature axis remains equal to λ0. There-
fore, if τ is small, λt(τ) remains larger than λ0. From
what we deduce the existence of a turning point in the
spin glass/ferromagnet phase boundary (Fig. 4b): the spin
glass phase does not reenter close to the tricritical point
whereas it reenters at lower temperatures. We believe this
behavior to be generic of spin glass models with frozen
exchanges and we conjecture that a similar behavior may
be obtained in finite dimensional models.

4.3 Dilution with a short-range frustration τ ; λ = 0;
(µ, T) phase diagram

A small-τ perturbation calculation leads to pt = 1− 1
2ut,

µt = 1
2 −

1
2ut, and dκ/dT |t = τ/2T 2

t > 0, which proves
that the spin glass phase reenters in the ferromagnetic
phase close to the tricritical point in the limit of small
τ . We have shown in Figure 3 the behavior of the spin
glass/ferromagnet phase boundary. This phase boundary
is exact only close to the tricritical point, and we have
continued it by an arbitrary straight line at lower tem-
peratures. The reentrant behavior is confirmed by zero
temperature exact results. The paramagnetic/spin glass



174 The European Physical Journal B

frontier intersects the zero temperature axis at the perco-
lation threshold, and the spin glass/ferromagnet frontier
intersects the zero temperature axis at µ0, the real root of
−10µ3

0 + 6µ2
0 − 5µ0 + 1 = 0, approximately µ0 ' 0.24191.

This confirms the reentrant behavior of the spin glass tran-
sition in the dilute magnet model with frustration.

5 Diluting the spin liquid

We now consider dilution in the regime τ > 1, i.e. when
the pure system is a spin liquid (see Fig. 2). As it could
be expected, a ferromagnetic instability of the spin liquid
solution (Eq. (9)) does not exist. However, a spin glass
instability of the paramagnetic solution does exist upon
diluting the system. Let us first consider the zero tem-
perature phases, in the limit 1 − u � 1 − p � 1 (since
τ > 1). The phase diagram at finite temperatures is shown
in Figure 5. A finite temperature spin glass phase opens
from the point (µ = 1/2, T = 0) as temperature is in-
creased from zero. The low temperature phase boundary
is T = 4(1− τ)/[ln (µ− 1/2)2]. This provides a simple sit-
uation in which diluting an Ising spin liquid results in an
Ising spin glass phase. The underlying ordering by disor-
der mechanism [36] is analyzed in Section 6.2.

6 Conclusion: diluting a frustrated magnet
versus diluting a spin liquid

We have shown the existence of a spin glass solution upon
diluting both the weakly frustrated magnet (τ < 1), and
the spin liquid (τ > 1). We underline the differences in
the physics in these two regimes.

6.1 Diluting the frustrated ferromagnet

We believe the generation of a spin glass phase upon
weakly frustrating a dilute magnet close to the percolation
threshold to be due to the following: the strong diluted
unfrustrated magnet is already close to a spin glass. This
can be seen on the example of square lattice dilute mag-
nets [2], where dilution removes sites in the ferromagnet
up to the point where the percolating cluster is a fractal
object at the percolation point. Since the order of ramifi-
cation of percolating clusters is finite [32], one can isolate
large droplet-like objects [33] from the remaining of the
structure by cutting a finite number of bonds. This re-
sults in large sets of spins that can be reversed at a finite
energy cost, thus being responsible for the existence of
quasi-degenerate ground states separated by a large dis-
tance in phase space (with different magnetizations [34]),
and with barriers scaling like the logarithm of their
volume [2].

The addition of frustration in dilute magnets close to
the percolation threshold turns the quasi spin glass or-
der into a true one. We have shown this explicitly in our
model, and a similar behavior was obtained in another
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Fig. 5. Boundary between the spin glass and paramagnetic
phases upon diluting the spin liquid state of our model (τ > 1).
The spin glass phase is confined inside the boundary shown for
τ = 1.2 (�·), τ = 1.25 (+), and τ = 1.3 (�). The spin glass
boundary collapses onto the point µ = 1/2 in the zero temper-
ature limit. This boundary behaves like T ∼ 1/ ln |µ− 1/2|
around this singular point The spin glass phase is favored
upon increasing the temperature (ordering by disorder – see
Sect. 6.2).

model [12]. We do not expect the low energy states of
the spin glass phase with a small frustration to be very
different from the droplet-like states of the unfrustrated
magnet.

The “chaos and memory” behavior of metallic spin
glasses was put forward in reference [35], associated to the
growth of fractal droplets with a chaotic behavior in the
sense that droplets at a given temperature overlap weakly
with droplets at a different temperature. We do not expect
a chaotic behavior in our model because the finite temper-
ature droplet excitations of the frustrated dilute magnet
should be obtained from reversing clusters of spins in the
unfrustrated magnet dilute lattice.

6.2 Diluting the spin liquid: ordering by disorder

The mechanism for generating a spin glass phase from
the spin liquid is different. The spin glass phase origi-
nates from a balance between the small-dilution regime
in which dilution suppresses the liquid behavior in favor
of spin-glass correlations, and a large-dilution regime in
which dilution suppresses spin glass correlations by cut-
ting the system into finite pieces. This is an order by disor-
der mechanism [36]: thermal fluctuations favor a spin glass
arrangement and therefore reduce the phase space dimen-
sionality compared to the one of the spin liquid state. Let
us think in terms of low temperature properties in the
large-τ limit. In this limit, the neighboring spins coupled
by the strong antiferromagnetic exchange τ correlate an-
tiferromagnetic, thus leaving mainly two residual degrees
of freedom per bond τ . We note my and mz the magneti-
zation of these two spins, and, for the sake of a qualitative
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argument, assume my = −mz as a result of the strong
bond τ . Let us assume the spins at sites y and z to be
frozen and look whether freezing is relevant in the Bethe-
Peierls limit. We see from equation (6) that mx = 0 if the
two ferromagnetic bonds are present (i.e. if the triangular
plaquette is frustrated, θy = θz = 1). In the unfrustrated
plaquettes θy = 0, θz = 1, or θy = 1, θz = 0, correlations
in the magnetization can propagate from one generation to
the other. The system is cut into two pieces if θy = θz = 0,
preventing correlations to propagate from one generation
to the other. When the ferromagnetic bonds are diluted,
frustration is reduced since the fraction of frustrated tri-
angular plaquettes (1− µ)2 decreases upon increasing the
dilution µ. Decreasing frustration therefore decreases the
short range liquid-like correlations and favors a coopera-
tive spin glass arrangement. In the large dilution limit, the
exchanges are severely depleted and a paramagnetic be-
havior is restored since the system is cut into finite pieces.
In between these two regimes, the unfrustred bond con-
figurations θy = 1, θz = 0 and θy = 0, θz = 1 with a
weight 2µ(1 − µ) dominate the physics and make a spin
glass order possible.

6.3 Concluding remarks

Finally, we would like to compare the present work to
other approaches developed previously in the literature,
and mention some open questions. The phase diagram
with all the bonds drawn from the distribution (3) was
studied by Aharony [37], Giri and Stephen [38] and Viana
and Bray [39]. These models share similarities with the
dilute fcc antiferromagnets studied by de Seze [40] and
Wengel, Henley and Zippelius [41].

Nieuwenhuizen [42] and Nieuwenhuizen and
van Duin [43] studied the field theory of a model of
site-disordered magnet. One may also define a model
similar to ours in a finite dimension. As we conjectured,
a phase diagram similar to the one in Figure 4b may
be obtained. On the other hand, it may be useful to
investigate replica symmetry breaking in Bethe-Peierls
calculations.

Hierarchical lattices have been used previously by
Georges and Le Doussal [12] in relation with the renormal-
ization group flow along Nishimori’s line, and by Gingras
and Sørensen to study reentrance from a paramagnetic to
a ferromagnetic phase [44]. A model with frozen exchanges
may be studied on a finite dimensional hierarchical lattice,
which could be a first step in addressing the phase diagram
in Figure 4b in a finite dimension. This approach should
probably rely on a numerical iteration of the renormaliza-
tion equations similar to reference [44] while an analytic
study was possible in the present work.

Finally, ordering by disorder seems to be a generic be-
havior of spin liquids [27,36,28,45,46]. We found in the
present work an ordering by disorder resulting in a tran-
sition from a paramagnetic to a spin glass ordering in an
Ising model. This may be viewed as a “minimal” ordering
by disorder from a Z2-symmetric paramagnet to a spin

glass because the Ising order parameter has the lowest
possible spin symmetry.
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